m-Projections involving Minkowski inverse and range symmetric property in Minkowski space

نویسندگان

  • D. Krishnaswamy Department of Mathematics, Annamalai University, Chidambaram, PO. Code 608002, Tamilnadu, India
  • M. Saleem Lone Department of Mathematics, Annamalai University, Chidambaram, PO. Code 608002, Tamilnadu, India
چکیده مقاله:

In this paper we study the impact of Minkowski metric matrix on a projection in the Minkowski Space M along with their basic algebraic and geometric properties.The relation between the m-projections and the Minkowski inverse of a matrix A in the minkowski space M is derived. In the remaining portion commutativity of Minkowski inverse in Minkowski Space M is analyzed in terms of m-projections as an analogous development and extension of the results on EP matrices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m-projections involving minkowski inverse and range symmetric property in minkowski space

in this paper we study the impact of minkowski metric matrix on a projection in theminkowski space m along with their basic algebraic and geometric properties.the relationbetween the m-projections and the minkowski inverse of a matrix a in the minkowski spacemis derived. in the remaining portion commutativity of minkowski inverse in minkowski spacem is analyzed in terms of m-projections as an a...

متن کامل

Range Symmetric Matrices in Minkowski Space

The concept of range symmetric matrix is introduced in Minkowski space m. Equivalent conditions for a matrix to be range symmetric are determined. The existence of the Minkowski inverse of a range symmetric matrix in m is discussed.

متن کامل

The representation and approximation for the weighted Minkowski inverse in Minkowski space

This paper extends some results for the weighted Moore–Penrose inverse A+M,N in Hilbert space to the so-called weighted Minkowski inverse A⊕M,N of an arbitrary rectangular matrix A ∈ Mm,n in Minkowski spaces μ. Four methods are also used for approximating the weighted Minkowski Inverse A⊕M,N . These methods are: Borel summable, Euler–Knopp summable, Newton–Raphson and Tikhonov’s methods. c © 20...

متن کامل

Some New Algebraic and Topological Properties of the Minkowski Inverse in the Minkowski Space

We introduce some new algebraic and topological properties of the Minkowski inverse A([Symbol: see text) of an arbitrary matrix A[Symbol: see text] M m,n (including singular and rectangular) in a Minkowski space μ. Furthermore, we show that the Minkowski inverse A ([Symbol: see text]) in a Minkowski space and the Moore-Penrose inverse A(+) in a Hilbert space are different in many properties suc...

متن کامل

Existence of Minkowski space

Abstract Physics textbooks present Minkowski space as an almost pure mathematical construct, without any explicit restriction on a domain where it is applicable in physics. Meanwhile, its physical meaning cannot but follow the same premises as those which underlies the special relativity theory: motion of free point particles and propagation of electromagnetic waves. However, the common formali...

متن کامل

Reconstructing Minkowski Space-Time

Minkowski space is a physically important space-time for which the finding an adequate holographic description is an urgent problem. In this paper we develop further the proposal made in [1] for the description as a duality between Minkowski spacetime and a Conformal Field Theory defined on the boundary of the light-cone. We focus on the gravitational aspects of the duality. Specifically, we id...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 05  شماره 03

صفحات  215- 228

تاریخ انتشار 2016-11-07

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023